CONTÁCTENOS - 91 575 78 24
RSS
Estás en www.ingenieriayarte.com
Si no encuentra un libro lo buscamos por Ud.
91 575 78 24

CESTA DE LA COMPRA

Tiene 0 productos en su cesta Importe total: 0

Por favor introduzca la cantidad deseada y pulse sobre el carrito.

123.75 €/Ud.
Cantidad:

Technology Innovation in Underground Construction

Autor:

Descripción

This richly-illustrated reference guide presents innovative techniques focused on reducing time, cost and risk in the construction and maintenance of underground facilities: A primary focus of the technological development in underground engineering is to ease the practical execution and to reduce time, cost and risk in the construction and maintenance of underground facilities such as tunnels and caverns. This can be realized by new design tools for designers,


Características

  • ISBN: 9780415551052
  • Páginas: 504
  • Tamaño: 17X24
  • Edición:
  • Idioma: Inglés
  • Año: 2010

Compra bajo pedidoDisponibilidad: 15 a 30 Días

Contenido Technology Innovation in Underground Construction

This richly-illustrated reference guide presents innovative techniques focused on reducing time, cost and risk in the construction and maintenance of underground facilities: A primary focus of the technological development in underground engineering is to ease the practical execution and to reduce time, cost and risk in the construction and maintenance of underground facilities such as tunnels and caverns. This can be realized by new design tools for designers, by instant data access for engineers, by virtual prototyping and training for manufacturers, and by robotic devices for maintenance and repair for operators and many more advances. This volume presents the latest technological innovations in underground design, construction, and operation, and comprehensively discusses developments in ground improvement, simulation, process integration, safety, monitoring, environmental impact, equipment, boring and cutting, personnel training, materials, robotics and more. These new features are the result of a big research project on underground engineering, which has involved many players in the discipline.

Written in an accessible style and with a focus on applied engineering, this book is aimed at a readership of engineers, consultants, contractors, operators, researchers, manufacturers, suppliers and clients in the underground engineering business. It may moreover be used as educational material for advanced courses in tunnelling and underground construction.

ÍNDICE

1. Introduction

    1.1 Motivation
    1.2 Problems
    1.3 Vision
    1.3.1 Design
    1.3.2 Processes
    1.3.3 Equipment and materials
    1.3.4 Maintenance an repair
    1.4 Contents of the book

2. UCIS – Underground construction information system

    2.1 Introduction
    2.2 UCIS – Underground construction information system
    2.2.1 Objectives
    2.2.2 Architecture
    2.2.3 Design and development
    2.2.4 Data model
    2.2.5 3D ground model
    2.3 Introduction
    2.4 Contribution to the overall project
    2.5 Workflow
    2.6 Geometrical data: software implementation
    2.7 Geological & geomechanical attributes: classification
    2.8 Geological & geotechnical database
    2.9 Data link geometrical data – geological/ geotechnical objects
    2.10 Subsurface models
    2.10.1 UCIS – Applications
    2.11 KRONOS – tunnel information system
    2.12 KRONOS-WEB – monitoring data reporting and alarming system
    2.13 Decision support system for cyclic tunnelling
    2.14 Web-based information system on underground construction projects
    2.15 Virtual reality visualisation system
    2.16 Summary

3. Computer-support for the design of underground structures

    3.1 Introduction
    3.2 State-of-the-art in tunnel design
    3.3 The applied design concept
    3.3.1 Design method
    3.3.2 Analysis of the possible degree of automation
    3.3.3 Automation concept
    3.4 Rule base for tunnel pre-design
    3.4.1 Determination of the ground behaviour
    3.4.2 Determination of suitable excavation methods and support measures
    3.5 Key input parameters
    3.6 Support classes
    3.7 Energy classes
    3.8 Excavation methods
    3.9 Refinement for shield tunneling
    3.9.1 General workflow embedded in the rule base
    3.9.2 Determination of time and costs
    3.10 Integrated optimization platform for underground construction
    3.10.1 Realization/implementation
    3.11 Graphical user interface
    3.12 3D-Ground model
    3.13 Rule base
    3.14 Numerical simulation software
    3.14.1 Background information and software technology
    3.15 Summary

4. A virtual reality visualisation system for underground construction

    4.1 Introduction
    4.1.1 Virtual reality
    4.1.2 Augmented reality
    4.1.3 Mixed reality
    4.1.4 Capacity of today’s VR-, AR- and MR-systems
    4.2 A Virtual reality visualisation system for underground construction
    4.2.1 Objective
    4.2.2 Input data
    4.2.3 VR software
    4.2.4 VR hardware
    4.2.5 Application example
    4.3 Summary
    4.4 Outlook, augmented reality in tunnelling

5. From laboratory, geological and TBM data to input parameters for simulation models

    5.1 Introduction
    5.2 A hierarchical, relational and web-driven Rock Mechanics Database
    5.2.1 Introduction
    5.2.2 Test data reduction methodology
    5.2.3 A failure criterion for rocks
    5.2.4 Example calibration of lab test rock parameters to model parameters of the HMC constitutive model (Level-B of analysis)
    5.2.5 Structure of the rock mechanics database
    5.3 Geometrical and geostatistical discretization of geological solids
    5.3.1 Introduction
    5.3.2 Solid modeling
    5.3.3 Geostatistical modeling
    5.4 A special upscaling theory of rock mass parameters
    5.4.1 Introduction
    5.4.2 A special upscaling theory for rock masses
    5.4.3 Illustrative upscaling example
    5.5 Back-analysis of tbm logged data
    5.5.1 Introduction
    5.5.2 Basic relationships
    5.5.3 An example of backward analysis
    5.6 Conclusions

6. Process-oriented numerical simulation of mechanised tunnelling

    6.1 Introduction
    6.1.1 Requirements for computational models for mechanised tunnel construction
    6.1.2 Novel computational framework for process-oriented simulations in mechanised tunnelling as part of an integrated decision support system
    6.2 Three-phase model for partially saturated soil
    6.2.1 Theory of porous media
    6.2.2 Governing balance equations
    6.2.3 Constitutive relations for hydraulic behaviour
    6.2.4 Stress-strain behaviour of soil skeleton
    6.3 Finite element formulation of the multiphase model for soft soils
    6.3.1 Spatial and temporal discretization
    6.3.2 Object-oriented implementation
    6.4 Selection of soil models and parameters
    6.4.1 Saturated soil model
    6.4.2 Unsaturated soil model
    6.4.3 Cemented soil model
    6.4.4 Double hardening soil model
    6.5 Verification of the three-phase model for soft soils
    6.5.1 Consolidation test
    6.5.2 Drying test
    6.6 Components of the finite element model for mechanised tunnelling
    6.6.1 Heading face support
    6.6.2 Frictional contact between TBM and soil
    6.6.3 Tail void grouting
    6.6.4 Shield machine, hydraulic jacks, lining and backup trailer
    6.7 Model generation and simulation procedure
    6.7.1 Automatic model generation
    6.7.2 Mesh adaption for TBM advance and steering of shield machine
    6.7.3 Interface to IOPT
    6.7.4 Parallelisation concept
    6.8 Sensitivity analysis and parameter identification
    6.8.1 Numerical approximation of sensitivity terms
    6.8.2 Analytical sensitivities derived by the direct differentiation method
    6.8.3 Adjoint method for deriving analytical sensitivities
    6.8.4 Implementation of analytical sensitivity methods
    6.8.5 Optimisation of process parameters
    6.8.6 Inverse analyses for estimation of unknown parameters
    6.8.7 Current state and outlook for further developments in sensitivity analyses
    6.9 Selected applications of the simulation model for mechanised tunnelling
    6.9.1 Numerical simulation of compressed air support
    6.9.2 Numerical simulation of changing pressure conditions at the heading face
    6.9.3 Numerical simulation of the Mas Blau section of L9 of Metro Barcelona
    6.10 Conclusions

7. Computer simulation of conventional construction

    7.1 Introduction
    7.2 A new simulation paradigm
    7.3 Preprocessor
    7.4 The boundary element method
    7.4.1 Sequential excavation
    7.5 Example – sequential tunnel excavation
    7.5.1 Non-linear material behavior
    7.6 Non-linear BEM
    7.7 The non-linear solution algorithm
    7.8 Hierarchical constitutive model
    7.9 Example
    7.9.1 Heterogeneous ground and ground improvement methods
    7.10 Introduction
    7.11 Consideration of geological conditions
    7.12 Pipe roofs
    7.13 Examples
    7.13.1 Rock bolts
    7.14 Introduction
    7.15 Fully grouted rock bolts
    7.16 Discrete anchored bolts
    7.17 Examples
    7.17.1 Shotcrete and steel arches
    7.18 Introduction
    7.19 Shotcrete as an assembly of shell finite elements
    7.20 Steel arches as an assembly of beam finite elements
    7.21 Optimization of code and adaptation to special hardware
    7.21.1 Computational complexity
    7.21.2 Iterative solvers
    7.21.3 Fast methods
    7.21.4 Modern hardware – parallelization
    7.22 Practical application
    7.22.1 The koralm tunnel

8. Optical fiber sensing cable for underground settlement monitoring during tunneling

    8.1 Introduction
    8.1.1 Tunnel construction with tunnel boring machines
    8.1.2 Risk associated to tunneling in urban areas
    8.1.3 State of the art
    8.1.4 Research frame
    8.1.5 Settlement to be measured
    8.1.6 Developed solutions
    8.2 Sensors based on deformation of optical fibres
    8.2.1 General principles
    8.2.2 Brillouin technology
    8.2.3 Fiber embedded at the periphery of a cable or a tube
    8.2.4 Cable environment
    8.2.5 Development of an industrial process
    8.3 Sensing element
    8.4 15 mm diameter cable
    8.5 150 mm diameter cable
    8.6 Sensors based on slope measurement
    8.7 Sensor validation
    8.7.1 Geometric validation in open air
    8.8 Bench test
    8.9 Optical fiber validation
    8.10 TBMSET validation
    8.10.1 Geometric validation in buried material – cairo tests
    8.11 Presentation of cairo project
    8.12 Test area
    8.13 Settlement gauges network
    8.14 Installation of the test area
    8.15 On site data acquisition from sensing elements
    8.16 Job site data
    8.17 Settlement gauges
    8.18 Validation of pipe behavior inside the ground
    8.19 Impact of grout injection on the settlement
    8.20 Optical fiber results
    8.21 TBMSET results
    8.22 Conclusion

9. Tunnel seismic exploration and its validation based on data from TBM control and observed geology

    9.1 Introduction
    9.2 Seismic exploration during tunneling
    9.2.1 Challenges
    9.2.2 Finite-difference simulations of seismic data
    9.3 Description of the discrete model
    9.4 Modeling results
    9.4.1 Short outline of seismic data processing
    9.5 Pre-processing
    9.6 Migration and velocity analysis
    9.7 Use of TBM data and geology for seismic data validation
    9.8 Conclusions

10. Advances in the steering of Tunnel Boring Machines

    10.1 Introduction
    10.1.1 Motivation
    10.1.2 Solution concept
    10.2 Analysis of relevant steering parameters
    10.2.1 TBM control and monitoring systems – state of the art
    10.3 Systems for subsidence monitoring
    10.4 Monitoring systems for geodetic survey of the machine position and orientation
    10.5 Steering system for the control parameters of the tunnelling machine
    10.5.1 Induced surface deformations and control parameters during shield drive
    10.6 Subsidence in front of the cutter head (advanced subsidence)
    10.7 Subsidence in the area of the shield
    10.8 Subsidence associated with annular gap grouting
    10.9 Subsidence after hardening of the annular gap mortar (subsequent subsidence)
    10.9.1 Expert rules for subsidence control
    10.10 Steering system
    10.10.1 Requirements
    10.10.2 Solution concept and system architecture
    10.10.3 Fuzzy logic expert system and reasoning
    10.11 Rules
    10.12 Fuzzy logic data evaluation
    10.12.1 Software system developed
    10.12.2 verification and validation
    10.13 Incident management system
    10.13.1 General
    10.13.2 Causes for incidents
    10.14 Geology and hydrology
    10.15 Shield machine
    10.16 Operation errors
    10.16.1 Development of the incident catalogue
    10.16.2 Description of the incident management system
    10.16.3 Showcase example in detail
    10.16.4 Automated detection of incidents
    10.17 Conclusion

11. Real-time geological mapping of the front face

    11.1 Introduction
    11.2 State of the art
    11.3 Technological solution
    11.3.1 Objectives
    11.3.2 Specifications
    11.3.3 Technological choices
    11.4 Disc cutter and housing
    11.5 Overall description
    11.6 Monitored parameters
    11.7 Disc cutter modeling
    11.8 Mobydic monitoring
    11.9 Applications
    11.9.1 Lock ma shau tunnel
    11.9.2 A41
    11.10 Conclusion

12. Reducing the environmental impact of tunnel boring (OSCAR)

    12.1 Introduction
    12.2 State of the art
    12.2.1 Historical context
    12.2.2 Tunnel construction with tunnel boring machine
    12.2.3 Soil conditioning for EPB machine
    12.3 Research project description
    12.3.1 Objective
    12.3.2 The overall objective of these tests isto define the specific additive properties versus specific situations, e.g. soil, confinement pressure, soil permeability, and to develop adapted foams. A computer program has been written for the right selection the foam dosage. Selected tests
    12.4 Oscar reactor
    12.4.1 OSCAR general view
    12.4.2 The reactor
    12.4.3 Screw conveyor
    12.4.4 Baroïd water loss filter (Garcia, IFP)
    12.4.5 Direct output
    12.4.6 Foam production (Fig. 11)
    12.5 Test results
    12.5.1 Soil
    12.6 Soil types
    12.7 Clay
    12.8 Silt
    12.9 Sand
    12.10 Mixed soil
    12.11 Soil with gypsum content
    12.12 Soil conditioning
    12.12.1 Additives
    12.13 Surfactants
    12.14 Foam design rules
    12.15 Specifications of foams
    12.16 Polymers
    12.17 Other additives
    12.18 Specification of foams
    12.19 Input required and calculation of foam parameters
    12.20 Atmospheric tests
    12.21 Hyperbaric Tests
    12.22 Foam dosage computation
    12.23 Proposed draft standard
    12.23.1 Ground sampling
    12.23.2 Cutter head sealant
    12.23.3 Soil conditioning test
    12.24 Step 1: Atmospheric tests
    12.25 Step 2: Atmospheric tests
    12.26 Step 3: Pressurized tests
    12.27 Conclusion

13. Safety assessment during construction of shotcrete tunnel shells using micromechanical material models

    13.1 Introduction
    13.2 Modeling cementitious materials in the framework of continuum micromechanics
    13.2.1 Fundamentals of micromechanics – Representative volume element (RVE)
    13.2.2 Micromechanical representation of cementitious materials
    13.2.3 Elasticity and strength of cementitious materials
    13.3 Morphological representation of hydration products in cement paste
    13.4 Strength of cement paste
    13.5 Strength of shotcrete
    13.6 Experimental validation of micromechanics-based material models
    13.6.1 Mixture-dependent shotcrete composition
    13.6.2 Experimental validation on cement paste level
    13.6.3 Experimental validation on shotcrete level
    13.7 Micromechanics-based characterization of shotcrete: Influence of water-cement and aggregate-cement ratios on elasticity and strength evolutions
    13.8 Continuum micromechanics-based safety assessment of natm tunnel shells
    13.8.1 Water-cement ratio-dependence of structural safety
    13.8.2 Aggregate-cement ratio-dependence of structural safety
    13.9 Conclusions

14. Observed segment behaviour during tunnel advance

    14.1 Introduction
    14.2 Organization of the chapter
    14.3 Forces on the EPB machine
    14.3.1 Excavation mode
    14.3.2 Ring mounting mode
    14.4 Eccentricity of the Jack’s total thrust
    14.5 Backfill mortar injection pressures
    14.6 Study of several cases
    14.6.1 Collection and treatment of data
    14.6.2 Geological considerations
    14.6.3 Comparison between theoretical and EPB machine registered thrusts
    14.6.4 Registered eccentricities
    14.6.5 Tests to measure the pressure on the segments using pressure sensors
    14.7 Conclusions
    14.7.1 Definition of the forces acting on the EPB machine.
    14.7.2 Effects of the eccentricity of the resultant of thrusting forces
    14.7.3 Distribution of the backfill mortar pressures

15. Optimizing rock cutting through computer simulation

    15.1 Introduction
    15.2 Tool–rock interaction
    15.3 Wear of rock cutting tools
    15.4 Thermomechanical model of rock cutting
    15.5 Wear model
    15.6 Determination of rock model parameters
    15.7 Simulation of rock cutting laboratory test
    15.8 Simulation of rock cutting with wear evaluation
    15.9 3D simulation of the laboratory test of rock cutting
    15.10 Simulation of the linear cutting test
    15.11 Conclusions

16. Innovative roadheader technology for safe and economic tunnelling

    16.1 Roadheaders – state of the art
    16.1.1 Tunneling with roadheaders
    16.1.2 The principle of roadheader operation
    16.1.3 Roadheader components
    16.2 Overview
    16.3 Cutter head, picks
    16.3.1 Roadheader application
    16.3.2 Roadheader selection
    16.4 Rock parameters
    16.5 Profile size – mode of application
    16.6 One-step face excavation
    16.7 Multi-step excavation of larger sections
    16.8 Application in difficult ground conditions
    16.8.1 Application example: Mont Cenis Tunnel/France–Italy
    16.8.2 Application example: Metro Montreal Project, Lot C 04/Canada
    16.9 The new roadheader generation – features and benefits
    16.9.1 New technology
    16.9.2 Integrated guidance system
    16.10 Introduction
    16.11 System principle
    16.11.1 Improved sandvik cutting technology
    16.12 Introduction
    16.13 Pick-rock interaction
    16.14 Numerical simulation
    16.15 Outlook

17. Tube-à-manchette installation using horizontal directional drilling for soil grouting

    17.1 Introduction
    17.2 development of an articulated double packer
    17.3 development of a blocking system for the sealing grout
    17.4 design of the test
    17.5 test development
    17.5.1 Phase 1: Initial works
    17.5.2 Phase 2: Horizontal directional drilling
    17.5.3 Phase 3: Steel casing installation
    17.5.4 Phase 4: Steel casing extraction
    17.5.5 Phase 5: Injection of the grout bag
    17.5.6 Phase 6: Annular sheath grouting
    17.5.7 Phase 8: Ground injection
    17.6 Summary

18. TBM technology for large to very large tunnel profiles

    18.1 Introduction
    18.2 Two mixshields for the railway tunnel access route to the brenner base tunnel
    18.3 Two double shielded hard rock TBMs for the Brisbane North South Bypass Tunnel (NSBT)
    18.4 Trend of very large diameter tunnel profiles
    18.4.1 Largest earth pressure balance shield (Ø15.2M) used for the M30 road tunnel project in Madrid
    18.4.2 Largest mixshield (Ø15.4 m) used for the Changjiang under river tunnel project in Shanghai
    18.5 Tunconstruct activities

19. Real-time monitoring of the shotcreting process

    19.1 Introduction
    19.2 Monitoring the shotcreting process
    19.2.1 Pumping variables
    19.2.2 Spraying variables
    19.3 Final remarks

20. Environmentally friendly, customised sprayed concrete

    20.1 Introduction
    20.2 Performance-based approach
    20.3 Indicators chosen and their meanings
    20.3.1 Constituent materials and mix proportions
    20.3.2 Full scale sample preparation and tests conducted
    20.4 Advantages of the approach: selected results
    20.5 Final remarks and conclusions
    20.6 Abbreviations

21. Innovations in shotcrete mixes

    21.1 Introduction
    21.2 Innovations
    21.2.1 New components materials PB criterion
    21.2.2 New special superplasticizer and nozzle accelerator
    21.3 Special superplasticizer
    21.4 Nozzle accelerator
    21.4.1 New SM Automation of shotcrete machine
    21.4.2 New admixture dosing unit
    21.5 Shotcrete simplified mix design rules program
    21.5.1 MDR (Mix Design Rules)
    21.5.2 SMD (Shotcrete Mix design)
    21.5.3 RER Validation factor
    21.6 Summary

22. High performance and ultra high performance concrete segments – development and testing

    22.1 Introduction
    22.2 Development and laboratory testing
    22.2.1 Basic recipe development
    22.2.2 Derivation of design parameters and re-calculation
    22.2.3 Comparative calculations
    22.2.4 Checking of fire resistant behavior
    22.2.5 Testing of industrial segment production
    22.3 Real scale tests
    22.3.1 General
    22.3.2 Segment load bearing test
    22.4 General
    22.5 Test stand (Fig. 22.8)
    22.6 Measurement
    22.7 Conducting the segment load bearing test
    22.7.1 Diaphragm load test
    22.8 General
    22.9 Test stand (Fig. 22.12)
    22.10 Measurement
    22.11 Conducting the diaphragm load test
    22.11.1 Torsional rigidity test
    22.12 General
    22.13 Test stand (Fig. 22.14)
    22.14 Measurement
    22.15 Conducting the torsional rigidity test
    22.16 First test results
    22.17 Summary

23. Robotic tunnel inspection and repair

    23.1 Introduction
    23.2 Dragarita robot for fast inspection
    23.3 IRIS: Integrated robotic inspection and maintenance system
    23.3.1 Maintenance operations
    23.3.2 Integrated process automation
    23.3.3 Laboratory and field tests
    23.4 Conclusions

24. An innovative geotechnical characterization method for deep exploration

    24.1 Introduction
    24.2 Background
    24.3 Rock mass characterization with the stackable logging tools
    24.3.1 Field tests
    24.3.2 Rock quality estimation and borehole geophysical logging
    24.4 Summary and conclusions

NO TE PIERDAS LAS NOVEDADES

Suscríbete a nuestro boletín informativo para estar al día de todas las promociones y novedades.

Pago seguro | Mensajerías

Copyright © Despegando S.L. 2017 | | info@ingenieriayarte.com