CONTÁCTENOS - 91 575 78 24
RSS
Estás en www.ingenieriayarte.com
Si no encuentra un libro lo buscamos por Ud.
91 575 78 24

CESTA DE LA COMPRA

Tiene 0 productos en su cesta Importe total: 0
> > Ultimate Limit State Analysis and Design of Plated Structures

Por favor introduzca la cantidad deseada y pulse sobre el carrito.

135 €/Ud.
Cantidad:

Ultimate Limit State Analysis and Design of Plated Structures

Autor:

Descripción

The new edition of this well-established reference reviews and describes both fundamentals and practical design procedures for steel plated structures. The derivation of the basic mathematical expressions is presented together with a thorough discussion of the assumptions and the validity of the underlying expressions and solution methods.


Características

  • ISBN: 978-1-119-36779-6
  • Páginas: 664
  • Tamaño: 17x24
  • Edición:
  • Idioma: Ingles
  • Año: 2018

Compra bajo pedidoDisponibilidad: 3 a 7 Días

Contenido Ultimate Limit State Analysis and Design of Plated Structures

Reviews and describes both the fundamental and practical design procedures for the ultimate limit state design of ductile steel plated structures

The new edition of this well-established reference reviews and describes both fundamentals and practical design procedures for steel plated structures. The derivation of the basic mathematical expressions is presented together with a thorough discussion of the assumptions and the validity of the underlying expressions and solution methods.

Furthermore, this book is also an easily accessed design tool, which facilitates learning by applying the concepts of the limit states for practice using a set of computer programs, which can be downloaded.

Ultimate Limit State Design of Steel Plated Structures provides expert guidance on mechanical model test results as well as nonlinear finite element solutions, sophisticated design methodologies useful for practitioners in industries or research institutions, and selected methods for accurate and efficient analyses of nonlinear behavior of steel plated structures both up to and after the ultimate strength is reached.

Covers recent advances and developments in the field

 Includes new topics on constitutive equations of steels, test database associated with low/elevated temperature, and strain rates

Includes a new chapter on a semi-analytical method

Supported by a companion website with illustrative example data sheets

Provides results for existing mechanical model tests

Offers a thorough discussion of assumptions and the validity of underlying expressions and solution methods

Designed as both a textbook and a handy reference, Ultimate Limit State Design of Steel Plated Structures, Second Edition is well suited to teachers and university students who are approaching the limit state design technology of steel plated structures for the first time. It also meets the needs of structural designers or researchers who are involved in civil, marine, and mechanical engineering as well as offshore engineering and naval architecture.

Preface

About the Author

How to Use This Book

1 Principles of Limit State Design


1.1 Structural Design Philosophies
   1.1.1 Reliability-Based Design Format
   1.1.2 Partial Safety Factor-Based Design Format
   1.1.3 Failure Probability-Based Design Format
   1.1.4 Risk-Based Design Format
1.2 Allowable Stress Design Versus Limit State Design
   1.2.1 Serviceability Limit State Design
   1.2.2 Ultimate Limit State Design
   1.2.3 Fatigue Limit State Design
   1.2.4 Accidental Limit State Design
1.3 Mechanical Properties of Structural Materials
   1.3.1 Characterization of Material Properties
      1.3.1.1 Young’s Modulus,E
      1.3.1.2 Poisson’s Ratio,v
      1.3.1.3 Elastic Shear Modulus,G
      1.3.1.4 Proportional Limit, sP
      1.3.1.5 Yield Strength, sY, and Yield Strain, eY
      1.3.1.6 Strain-Hardening Tangent Modulus, Eh, and Strain-Hardening Strain, eh
      1.3.1.7 Ultimate Tensile Strength, sT
      1.3.1.8 Necking Tangent Modulus, En
      1.3.1.9 Fracture Strain, eF, and Fracture Stress, sF
   1.3.2 Elastic–Perfectly Plastic Material Model
   1.3.3 Characterization of the Engineering Stress–Engineering Strain Relationship
   1.3.4 Characterization of the True Stress–True Strain Relationship
   1.3.5 Effect of Strain Rates
   1.3.6 Effect of Elevated Temperatures
   1.3.7 Effect of Cold Temperatures
   1.3.8 Yield Condition Under Multiple Stress Components
   1.3.9 The Bauschinger Effect: Cyclic Loading
   1.3.10 Limits of Cold Forming
   1.3.11 Lamellar Tearing
1.4 Strength Member Types for Plated Structures
1.5 Types of Loads
1.6 Basic Types of Structural Failure
1.7 Fabrication Related Initial Imperfections
   1.7.1 Mechanism of Initial Imperfections
   1.7.2 Initial Distortion Modeling
      1.7.2.1 Plate Initial Deflection
      1.7.2.2 Column-Type Initial Deflection of a Stiffener
      1.7.2.3 Sideways Initial Distortion of a Stiffener
   1.7.3 Welding Residual Stress Modeling
   1.7.4 Modeling of Softening Phenomenon
1.8 Age Related Structural Degradation
   1.8.1 Corrosion Damage
   1.8.2 Fatigue Cracks
1.9 Accident Induced Damage
References

2 Buckling and Ultimate Strength of Plate–Stiffener Combinations: Beams, Columns, and Beam–Columns

2.1 Structural Idealizations of Plate–Stiffener Assemblies
2.2 Geometric Properties
2.3 Material Properties
2.4 Modeling of End Conditions
2.5 Loads and Load Effects
2.6 Effective Width Versus Effective Breadth of Attached Plating
   2.6.1 Shear Lag-Induced Ineffectiveness: Effective Breadth of the Attached Plating
   2.6.2 Buckling-Induced Ineffectiveness: Effective Width of the Attached Plating
   2.6.3 Combined Shear Lag-Induced and Buckling-Induced Ineffectiveness
2.7 Plastic Cross-Sectional Capacities
   2.7.1 Axial Capacity
   2.7.2 Shear Capacity
   2.7.3 Bending Capacity
      2.7.3.1 Rectangular Cross Section
      2.7.3.2 Plate–Stiffener Combination Model Cross Section
   2.7.4 Capacity Under Combined Bending and Axial Load
      2.7.4.1 Rectangular Cross Section
      2.7.4.2 Plate–Stiffener Combination Model Cross Section
   2.7.5 Capacity Under Combined Bending, Axial Load, and Shearing Force
2.8 Ultimate Strength of the Plate–Stiffener Combination Model Under Bending
   2.8.1 Cantilever Beams
   2.8.2 Beams Simply Supported at Both Ends
   2.8.3 Beams Simply Supported at One End and Fixed at the Other End
   2.8.4 Beams Fixed at Both Ends 106
   2.8.5 Beams Partially Rotation Restrained at Both Ends
   2.8.6 Lateral-Torsional Buckling
2.9 Ultimate Strength of the Plate–Stiffener Combination Model Under Axial Compression
   2.9.1 Large-Deflection Behavior of Straight Columns
   2.9.2 Elastic Buckling of Straight Columns
   2.9.3 Effect of End Conditions
   2.9.4 Effect of Initial Imperfections
   2.9.5 Collapse Strength of Columns
      2.9.5.1 The Johnson–Ostenfeld Formulation Method
      2.9.5.2 The Perry–Robertson Formulation Method
      2.9.5.3 The Paik–Thayamballi Empirical Formulation Method for a Steel Plate–Stiffener Combination Model
      2.9.5.4 The Paik Empirical Formulation Method for an Aluminum Plate–Stiffener Combination Model
   2.9.6 Local Web or Flange Buckling Under Axial Compression
   2.9.7 Lateral-Torsional Buckling Under Axial Compression
2.10 Ultimate Strength of the Plate–Stiffener Combination Model Under Combined Axial Compression and Bending
   2.10.1 The Modified Perry–Robertson Formulation Method
   2.10.2 Lateral-Torsional Buckling Under Combined Axial Compression and Bending
References

3 Elastic and Inelastic Buckling Strength of Plates Under Complex Circumstances

3.1 Fundamentals of Plate Buckling
3.2 Geometric and Material Properties
3.3 Loads and Load Effects
3.4 Boundary Conditions
3.5 Linear Elastic Behavior
3.6 Elastic Buckling of Simply Supported Plates Under Single Types of Loads
3.7 Elastic Buckling of Simply Supported Plates Under Two Load Components    
   3.7.1 Biaxial Compression or Tension
   3.7.2 Longitudinal Axial Compression and Longitudinal In-Plane Bending
   3.7.3 Transverse Axial Compression and Longitudinal In-Plane Bending
   3.7.4 Longitudinal Axial Compression and Transverse In-Plane Bending
   3.7.5 Transverse Axial Compression and Transverse In-Plane Bending
   3.7.6 Biaxial In-Plane Bending
   3.7.7 Longitudinal Axial Compression and Edge Shear
   3.7.8 Transverse Axial Compression and Edge Shear
   3.7.9 Longitudinal In-Plane Bending and Edge Shear
   3.7.10 Transverse In-Plane Bending and Edge Shear
3.8 Elastic Buckling of Simply Supported Plates Under More than Three Load Components
3.9 Elastic Buckling of Clamped Plates
   3.9.1 Single Types of Loads
   3.9.2 Combined Loads
3.10 Elastic Buckling of Partially Rotation Restrained Plates
   3.10.1 Rotational Restraint Parameters
   3.10.2 Longitudinal Axial Compression
      3.10.2.1 Partially Rotation Restrained at Long Edges and Simply Supported at Short Edges
      3.10.2.2 Partially Rotation Restrained at Short Edges and Simply Supported at Long Edges
      3.10.2.3 Partially Rotation Restrained at Both Long and Short Edges
   3.10.3 Transverse Axial Compression
      3.10.3.1 Partially Rotation Restrained at Long Edges and Simply Supported at Short Edges
      3.10.3.2 Partially Rotation Restrained at Short Edges and Simply Supported at Long Edges
      3.10.3.3 Partially Rotation Restrained at Both Long and Short Edges
   3.10.4 Combined Loads
3.11 Effect of Welding-Induced Residual Stresses
3.12 Effect of Lateral Pressure Loads
3.13 Effect of Opening
   3.13.1 Longitudinal Axial Compression
   3.13.2 Transverse Axial Compression
   3.13.3 Edge Shear
   3.13.4 Combined Loads
3.14 Elastic–Plastic Buckling Strength
   3.14.1 Single Types of Loads
      3.14.1.1 Plates Without Opening
      3.14.1.2 Perforated Plates
   3.14.2 Combined Loads
References

4 Large-Deflection and Ultimate Strength Behavior of Plates

4.1 Fundamentals of Plate Collapse Behavior
4.2 Structural Idealizations of Plates
   4.2.1 Geometric Properties
   4.2.2 Material Properties
   4.2.3 Loads and Load Effects
   4.2.4 Fabrication Related Initial Imperfections
   4.2.5 Boundary Conditions
4.3 Nonlinear Governing Differential Equations of Plates
4.4 Elastic Large-Deflection Behavior of Simply Supported Plates
   4.4.1 Lateral Pressure Loads
   4.4.2 Combined Biaxial Loads
   4.4.3 Interaction Effect Between Biaxial Loads and Lateral Pressure
   4.4.4 Interaction Effect Between Biaxial and Edge Shear Loads
4.5 Elastic Large-Deflection Behavior of Clamped Plates
   4.5.1 Lateral Pressure Loads
   4.5.2 Combined Biaxial Loads
   4.5.3 Interaction Effect Between Biaxial Loads and Lateral Pressure
4.6 Elastic Large-Deflection Behavior of Partially Rotation Restrained Plates
   4.6.1 Longitudinal Compression
   4.6.2 Transverse Compression
   4.6.3 Biaxial Compression
4.7 Effect of the Bathtub Deflection Shape
4.8 Evaluation of In-Plane Stiffness Reduction Due to Deflection
   4.8.1 Effective Width
   4.8.3 Effective Shear Modulus
4.9 Ultimate Strength
   4.9.1 Ultimate Strength by Gross Yielding
   4.9.2 Rigid-Plastic Theory Method
      4.9.2.1 Lateral Pressure Loads
      4.9.2.2 Axial Compressive Loads
   4.9.3 Membrane Stress-Based Method
      4.9.3.1 Ultimate Strength Conditions
      4.9.3.2 Lateral Pressure Loads
      4.9.3.3 Combined Longitudinal Axial Loads and Lateral Pressure
      4.9.3.4 Combined Transverse Axial Loads and Lateral Pressure
      4.9.3.5 Edge Shear
      4.9.3.6 Combined Edge Shear Loads and Lateral Pressure
      4.9.3.7 Combined Biaxial Loads, Edge Shear Loads, and Lateral Pressure
4.10 Effect of Opening
   4.10.1 Single Types of Loads
   4.10.2 Biaxial Compression
   4.10.3 Combined Longitudinal Compression and Edge Shear
   4.10.4 Combined Transverse Compression and Edge Shear
4.11 Effect of Age-Related Structural Deterioration
   4.11.1 Corrosion Damage
   4.11.2 Fatigue Cracking Damage
4.12 Effect of Local Denting Damage
4.13 Average Stress–Average Strain Relationship of Plates
   4.13.1 Pre-buckling or Undeflected Regime
   4.13.2 Post-buckling or Deflected Regime
   4.13.3 Post-ultimate Strength Regime
References

5 Elastic and Inelastic Buckling Strength of Stiffened Panels and Grillages

5.1 Fundamentals of Stiffened Panel Buckling
5.2 Structural Idealizations of Stiffened Panels
   5.2.1 Geometric Properties
   5.2.2 Material Properties
   5.2.3 Loads and Load Effects
   5.2.4 Boundary Conditions
   5.2.5 Fabrication Related Initial Imperfections
5.3 Overall Buckling Versus Local Buckling
5.4 Elastic Overall Buckling Strength
   5.4.1 Longitudinal Axial Compression
      5.4.1.1 Longitudinally Stiffened Panels
      5.4.1.2 Transversely Stiffened Panels
      5.4.1.3 Cross-Stiffened Panels (Grillages)
   5.4.2 Transverse Axial Compression
      5.4.2.1 Longitudinally Stiffened Panels
      5.4.2.2 Transversely Stiffened Panels
      5.4.2.3 Cross-Stiffened Panels (Grillages)
   5.4.3 Edge Shear
   5.4.4 Combined Biaxial Compression or Tension
   5.4.5 Combined Uniaxial Compression and Edge Shear
5.5 Elastic Local Buckling Strength of Plating Between Stiffeners
5.6 Elastic Local Buckling Strength of Stiffener Web
   5.6.1 Governing Differential Equation
   5.6.2 Exact Web Buckling Characteristic Equation
   5.6.3 Closed-Form Expressions of Stiffener Web Buckling Strength
5.7 Elastic Local Buckling Strength of Stiffener Flange
5.8 Lateral-Torsional Buckling Strength of Stiffeners
   5.8.1 Fundamentals of Lateral-Torsional Buckling
   5.8.2 Closed-Form Expressions of Lateral-Torsional Buckling Strength
      5.8.2.1 Elastic Flexural-Torsional Buckling Strength of Asymmetric Angle Stiffeners
      5.8.2.2 Elastic Flexural-Torsional Buckling Strength of Symmetric Tee Stiffeners
      5.8.2.3 Elastic Flexural-Torsional Buckling Strength of Flat-Bar Stiffeners
5.9 Elastic–Plastic Buckling Strength
References

6 Large-Deflection and Ultimate Strength Behavior of Stiffened Panels and Grillages

6.1 Fundamentals of Stiffened Panel Ultimate Strength Behavior
6.2 Classification of Panel Collapse Modes
6.3 Structural Idealizations of Stiffened Panels
   6.3.1 Collapse Modes I and VI
   6.3.2 Collapse Modes II, III, IV, and V
6.4 Nonlinear Governing Differential Equations of Stiffened Panels
   6.4.1 Large-Deflection Orthotropic Plate Theory
   6.4.2 Large-Deflection Isotropic Plate Theory
6.5 Elastic Large-Deflection Behavior After Overall Grillage Buckling
   6.5.1 Lateral Pressure Loads
   6.5.2 Combined Biaxial Loads
   6.5.3 Effect of the Bathtub Deflection Shape
   6.5.4 Interaction Effect Between Biaxial Loads and Lateral Pressure
6.6 Ultimate Strength
   6.6.1 Mode I: Overall Collapse
       6.6.1.1 Calculation of sI xu
       6.6.1.2 Calculation of sIy u
       6.6.1.3 Calculation of tIu
   6.6.2 Mode II: Plate Collapse Without Distinct Failure of Stiffener
       6.6.2.1 Calculation of sII xu
       6.6.2.2 Calculation of sII yu
       6.6.2.3 Calculation of tII u
   6.6.3 Mode III: Beam–Column Collapse
       6.6.3.1 Calculation of sIII xu
       6.6.3.2 Calculation of sIII yu
       6.6.3.3 Calculation of tIII u
   6.6.4 Mode IV: Collapse by Local Web Buckling of Stiffener
       6.6.4.1 Calculation of sIV xu
       6.6.4.2 Calculation of sIV yu
       6.6.4.3 Calculation of tIV u
   6.6.5 Mode V: Collapse by Lateral-Torsional Buckling of Stiffener
       6.6.5.1 Calculation of sV xu
       6.6.5.2 Calculation of sV yu
       6.6.5.3 Calculation of tV u
   6.6.6 Mode VI: Gross Yielding
   6.6.7 Determination of the Real Ultimate Strength
6.7 Effects of Age-Related and Accident Induced Damages
6.8 Benchmark Studies
References

7 Buckling and Ultimate Strength of Plate Assemblies: Corrugated Panels, Plate Girders, Box Columns, and Box Girders

7.1 Introduction
7.2 Ultimate Strength of Corrugated Panels
   7.2.1 Ultimate Strength Under Axial Compression
   7.2.2 Ultimate Strength Under Shearing Force
   7.2.3 Ultimate Strength Under Lateral Pressure
7.3 Ultimate Strength of Plate Girders
   7.3.1 Ultimate Strength Under Shearing Force
       7.3.1.1 Simple Post-Critical Buckling Method
       7.3.1.2 Tension Field Method
   7.3.2 Ultimate Strength Under Bending Moment
      7.3.2.1 Mode I
      7.3.2.2 Mode II
   7.3.3 Ultimate Strength Under Combined Shearing Force and Bending Moment
   7.3.4 Ultimate Strength Under Patch Load
   7.3.5 Ultimate Strength Under Combined Patch Load, Shearing Force, and Bending Moment
7.4 Ultimate Strength of Box Columns
7.5 Ultimate Strength of Box Girders
   7.5.1 Simple-Beam Theory Method
      7.5.1.1 Maximum Bending Stress
      7.5.1.2 Section Modulus
      7.5.1.3 First-Yield Bending Moment
      7.5.1.4 First-Collapse Bending Moment
      7.5.1.5 Full Plastic Bending Moment
      7.5.1.6 Exercise for Cross-Sectional Property Calculations
   7.5.2 The Caldwell Method
   7.5.3 The Original Paik–Mansour Method
   7.5.4 The Modified Paik–Mansour Method
   7.5.5 Interactive Relationship Between Vertical and Horizontal Bending
   7.5.6 Interactive Relationship Between Combined Vertical or Horizontal Bending and Shearing Force
   7.5.7 Interactive Relationship Between Combined Vertical Bending, Horizontal Bending, and Shearing Force
7.6 Effect of Age Related Structural Degradation
7.7 Effect of Accident-Induced Structural Damage
References

8 Ultimate Strength of Ship Hull Structures

8.1 Introduction
8.2 Characteristics of Ship’s Hull Structures
8.3 Lessons Learned from Accidents
8.4 Fundamentals of Vessel’s Hull Girder Collapse
8.5 Characteristics of Ship Structural Loads
8.6 Calculations of Ship’s Hull Girder Loads
   8.6.1 Still-Water Loads
   8.6.2 Long-Term Still-Water and Wave-Induced Loads: IACS Unified Formulas
   8.6.3 Long-Term Wave-Induced Loads: Direct Calculation
   8.6.4 Short-Term Wave-Induced Loads: Simplified Direct Calculations Using Parametric Seakeeping Tables
8.7 Minimum Section Modulus Requirement
8.8 Determination of Ultimate Hull Girder Strength
8.9 Safety Assessment of Ships
8.10 Effect of Lateral Pressure Loads
8.11 Ultimate Strength Interactive Relationships Between Combined Hull Girder Loads
   8.11.1 Combined Vertical and Horizontal Bending
   8.11.2 Combined Vertical Bending and Shearing Force
   8.11.3 Combined Horizontal Bending and Shearing Force
   8.11.4 Combined Vertical Bending, Horizontal Bending, and Shearing Force
   8.11.5 Effect of Torsional Moment
8.12 Shakedown Limit State Associated with Hull Girder Collapse
8.13 Effect of Age Related Structural Degradation
8.14 Effect of Accident-Induced Structural Damage
References

9 Structural Fracture Mechanics


9.1 Fundamentals of Structural Fracture Mechanics
9.2 Basic Concepts for Structural Fracture Mechanics Analysis
   9.2.1 Energy-Based Concept
   9.2.2 Stress Intensity Factor Concept
9.3 More on LEFM and the Modes of Crack Extension
   9.3.1 Useful K Solutions
   9.3.2 Fracture Toughness Testing
9.4 Elastic–Plastic Fracture Mechanics
   9.4.1 Crack Tip Opening Displacement
      9.4.1.1 The Irwin Approach
      9.4.1.2 The Dugdale Approach
      9.4.1.3 CTOD Design Curve
   9.4.2 Other EPFM Measures: J-Integral and Crack Growth Resistance Curve
      9.4.2.1 The J-Integral
      9.4.2.2 The Crack Growth Resistance Curve
9.5 Fatigue Crack Growth Rate and Its Relationship to the Stress Intensity Factor
9.6 Buckling Strength of Cracked Plate Panels
   9.6.1 Fundamentals
   9.6.2 A Plate with Edge Crack in Uniaxial Compression
   9.6.3 A Plate with Central Crack in Uniaxial Compression
   9.6.4 A Plate with Edge or Central Crack in Edge Shear
   9.6.5 A Plate with Vertical Edge Crack in Biaxial Compression
9.7 Ultimate Strength of Cracked Plate Panels
   9.7.1 Fundamentals
   9.7.2 A Cracked Plate in Axial Tension
   9.7.3 A Cracked Stiffened Panel in Axial Tension
   9.7.4 A Cracked Plate in Axial Compression
   9.7.5 A Cracked Plate in Edge Shear
References

10 Structural Impact Mechanics


  10.1 Fundamentals of Structural Impact Mechanics
  10.2 Load Effects Due to Impact
  10.3 Material Constitutive Equation of Structural Materials Under Impact Loading
    10.3.1 The Malvern Constitutive Equation
    10.3.2 Dynamic Yield Strength: The Cowper–Symonds Equation
    10.3.3 Dynamic Fracture Strain
    10.3.4 Strain-Hardening Effects
    10.3.5 Inertial Effects
    10.3.6 Friction Effects
10.4 Ultimate Strength of Beams Under Impact Lateral Loads
10.5 Ultimate Strength of Columns Under Impact Axial Compressive Loads
    10.5.1 Oscillatory Response
    10.5.2 Dynamic Buckling Response
10.6 Ultimate Strength of Plates Under Impact Lateral Pressure Loads
    10.6.1 Analytical Formulations: Small-Deflection Theory
    10.6.2 Analytical Formulations: Large-Deflection Theory
    10.6.3 Empirical Formulations
10.7 Ultimate Strength of Stiffened Panels Under Impact Lateral Loads
10.8 Crushing Strength of Plate Assemblies
  10.8.1 Fundamentals of Crushing Behavior
  10.8.2 A Plate
  10.8.3 A Stiffened Panel
  10.8.4 An Inclined Plate
  10.8.5 L-, T-, and X-Shaped Plate Assemblies
10.9 Tearing Strength of Plates and Stiffened Panels
  10.9.1 Fundamentals of Tearing Behavior
  10.9.2 Analytical Formulations
  10.9.3 Empirical Formulations
  10.9.4 Concertina Tearing
10.10 Impact Perforation of Plates
10.11 Impact Fracture of Plates and Stiffened Panels at Cold Temperature
10.12 Ultimate Strength of Plates Under Impact Axial Compressive Loads
10.13 Ultimate Strength of Dented Plates
  10.13.1 A Dented Plate in Axial Compression
  10.13.2 A Dented Plate in Edge Shear
References

11 The Incremental Galerkin Method
 
11.1 Features of the Incremental Galerkin Method
11.2 Structural Idealizations of Plates and Stiffened Panels
11.3 Analysis of the Elastic–Plastic Large-Deflection Behavior of Plates
  11.3.1 The Traditional Approach
  11.3.2 The Incremental Approach
  11.3.3 Application to the Plates Simply Supported at Four Edges
  11.3.4 Treatment of Plasticity
11.4 Analysis of the Elastic–Plastic Large-Deflection Behavior of Stiffened Panels
  11.4.1 The Traditional Approach
  11.4.2 The Incremental Approach
  11.4.3 Application to the Stiffened Panels Simply Supported at Four Edges
              External Load Increment Vector for the Plate Part
              Stiffness Matrix Associated with Initial Stress for the Plate Part
              Bending Stiffness Matrix for the Plate Part
              Stiffness Matrix Due to Membrane Action for the Plate Part
              Unknown Coefficient Vector
              External Load Increment Vector for Stiffeners
              Stiffness Matrix Associated with Initial Stress for Stiffeners
              Bending Stiffness Matrix for Stiffeners
              Stiffness Matrix Due to Membrane Action for Stiffeners
  11.4.4 Treatment of Plasticity
11.5 Applied Examples
  11.5.1 A Rectangular Plate Under Longitudinal Axial Compression
  11.5.2 A Rectangular Plate Under Transverse Axial Compression
  11.5.3 A Rectangular Plate Under Edge Shear
  11.5.4 A Rectangular Plate Under In-Plane Bending
  11.5.5 A Rectangular Plate Under Lateral Pressure Loads
  11.5.6 A Rectangular Plate Under Combined Transverse Axial Compression and Edge Shear
  11.5.7 A Rectangular Plate Under Other Types of Combined Load Applications
  11.5.8 A Stiffened Panel with Flat-Bar Stiffeners Under Uniaxial Compression
  11.5.9 A Stiffened Panel with Three Stiffeners Under Combined Axial Compression and Lateral Pressure Loads
  11.5.10 A Very Large Crude Oil Carrier’s Deck Structure Under Combined Axial Compression and Lateral Pressure

References

12 The Nonlinear Finite Element Method

12.1 Introduction
12.2 Extent of the Analysis
12.3 Types of Finite Elements
12.4 Mesh Size of Finite Elements
12.5 Material Modeling
12.6 Boundary Condition Modeling
12.7 Initial Imperfection Modeling
12.8 Order of Load Component Application
References 601

13 The Intelligent Supersize Finite Element Method

13.1 Features of the Intelligent Supersize Finite Element Method
13.2 Nodal Forces and Nodal Displacements of the Rectangular Plate Element
13.3 Strain versus Displacement Relationship
13.5 Tangent Stiffness Equation
  13.5.1 The Total Lagrangian Approach
  13.5.2 The Updated Lagrangian Approach
13.6 Stiffness Matrix for the Displacement Component,
13.7 Displacement (Shape) Functions
13.8 Local to Global Transformation Matrix
13.9 Modeling of Flat Bar Stiffener Web and One-Sided Stiffener Flange
13.10 Applied Examples
  13.10.1 A Rectangular Plate 613
  13.10.2 A Box Column 613
    13.10.2.1 A Short Box Column with L = 500mm
    13.10.2.2 A Medium Box Column with L = 8000mm
    13.10.2.3 A Long Box Column with L = 21 000mm
    13.10.2.4 Global Buckling of a Box Column
  13.10.3 A Ship’s Hull Girder: The Dow Test Model
13.10.4 A Corroded Steel-Bridge Structure

References

Appendices


A.1 Source Listing of the FORTRAN Computer Program CARDANO
A.2 SI Units
    A.2.1 Conversion Factors
    A.2.2 SI Unit Prefixes
    A.3 Density and Viscosity of Water and Air
    A.4 Scaling Laws for Physical Model Testing
       A.4.1 Structural Mechanics Model Tests
       A.4.2 Hydrodynamics Model Tests
           A.4.2.1 Froude’s Scaling Law
           A.4.2.2 Reynolds Scaling Law
           A.4.2.3 Vortex-Shedding Effects
           A.4.2.4 Surface-Tension Effects
           A.4.2.5 Compressibility Effects
Index
 

Pago seguro | Mensajerías

Copyright © Despegando S.L. 2024 | | info@ingenieriayarte.com