CONTÁCTENOS - 91 575 78 24
RSS
Estás en www.ingenieriayarte.com
Si no encuentra un libro lo buscamos por Ud.
91 575 78 24

CESTA DE LA COMPRA

Tiene 0 productos en su cesta Importe total: 0
> > Energy Dissipation in Hydraulic Structures

Por favor introduzca la cantidad deseada y pulse sobre el carrito.

98 €/Ud.
Cantidad:

Energy Dissipation in Hydraulic Structures

Autor:

Descripción

Recent advances in technology have permitted the construction of large dams, reservoirs and channels. This progress has necessitated the development of new design and construction techniques, particularly with the provision of adequate flood release facilities.


Características

  • ISBN: 978-1-13-802755-8
  • Páginas: 168
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2015

Compra bajo pedidoDisponibilidad: 3 a 7 Días

Contenido Energy Dissipation in Hydraulic Structures

Recent advances in technology have permitted the construction of large dams, reservoirs and channels. This progress has necessitated the development of new design and construction techniques, particularly with the provision of adequate flood release facilities. Chutes and spillways are designed to spill large water discharges over a hydraulic structure (e.g. dam, weir) without major damage to the structure itself and to its environment. At the hydraulic structure, the fl ood waters rush as an open channel flow or free-falling jet, and it is essential to dissipate a very signifi cant part of the fl ow kinetic energy to avoid damage to the hydraulic structure and its surroundings. Energy dissipation may be realised by a wide range of design techniques. A number of modern developments have demonstrated that such energy dissipation may be achieved (a) along the chute, (b) in a downstream energy dissipator, or (c) a combination of both.

The magnitude of turbulent energy that must be dissipated in hydraulic structures is enormous even in small rural and urban structures. For a small storm waterway discharging 4 m3/s at a 3 m high drop, the turbulent kinetic energy flux per unit time is 120 kW! At a large dam, the rate of energy dissipation can exceed tens to hundreds of gigawatts; that is, many times the energy production rate of nuclear power plants. Many engineers have never been exposed to the complexity of energy dissipator designs, to the physical processes taking place and to the structural challenges. Several energy dissipators, spillways and storm waterways failed because of poor engineering design. It is believed that a major issue affecting these failures was the lack of understanding of the basic turbulent dissipation processes and of the interactions between free-surface aeration and flow turbulence.

In that context, an authoritative reference book on energy dissipation in hydraulic structures is proposed here. The book contents encompass a range of design techniques including block ramps, stepped spillways, hydraulic jump stilling basins, ski jumps and impact dissipators.

Table Contents

1. Introduction: Energy dissipators in hydraulic structures
H. Chanson

2. Energy dissipation at block ramps
S. Pagliara and M. Palermo

3. Stepped spillways and cascades
H. Chanson, D.B. Bung and J. Matos

4. Hydraulic jumps and stilling basins
H. Chanson and R. Carvalho

5. Ski jumps, jets and plunge pools
M. Pfister and A.J. Schleiss

6. Impact dissipators
B.P. Tullis and R.D. Bradshaw

7. Energy dissipation: Concluding remarks
H. Chanson

Subject

index

NO TE PIERDAS LAS NOVEDADES

Suscríbete a nuestro boletín informativo para estar al día de todas las promociones y novedades.

Pago seguro | Mensajerías

Copyright © Despegando S.L. 2018 | | info@ingenieriayarte.com