CONTÁCTENOS - 91 575 78 24
RSS
Estás en www.ingenieriayarte.com
Si no encuentra un libro lo buscamos por Ud.
91 575 78 24

CESTA DE LA COMPRA

Tiene 0 productos en su cesta Importe total: 0

Por favor introduzca la cantidad deseada y pulse sobre el carrito.

195 €/Ud.
Cantidad:

Displacement-Based Seismic Design of Structures

Autor:

Descripción

Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response.


Características

  • ISBN: 978-8861980006
  • Páginas: 721
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2007

Compra bajo pedidoDisponibilidad: 3 a 7 Días

Contenido Displacement-Based Seismic Design of Structures

Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.

CONTENTS

Preface

1 Introduction: The Need for Disp lacement-Based Seismic Design      
             

1.1 Historical Considerations                                                                                   
1.2 Force-Based Seismic Design                                                                       
1.3 Problems with Force-Based Seismic Design                                                    
  1.3.1 Interdependency of  Strength and Stiffness                                         
  1.3.2 Period Calculation                                                                        
  1.3.3 Ductility Capacity and Force-Reduction Factors                               
  1.3.4 Ductility of Structural Systems                                                          
  1.3.5 Relationship between Strength and Ductility Demand                      
  1.3.6 Structural Wall Buildings with Unequal Wall Lengths                       
  1.3.7 Structures with Dual (Elastic and Inelastic) Load Paths                   
  1.3.8 Relationship between Elastic and Inelastic Displacement Demand                                                        
  1.3.9 Summary                                                                                     
1.4 Development of Displacement-Based Design Methods                                 
  1.4.1 Force-Based/Displacement Checked                                           
  1.4.2 Deformation-Calculation Based Design                                            
  1.4.3 Deformation-Specification Based Design                                          
  1.4.4 Choice of Design Approach                                                          

2 Seismic Input for Displacement-Based Design                                                  

2.1 Introduction: Characteristics of Accelerograms                                              
2.2 Response Spectra                                                                              
  2.2.1 Response Spectra from Accelerograms                                          
  2.2.2 Design Elastic Spectra                                                                   
  2.2.3 Influence of Damping and Ductility on Spectral Displacement Response                                                   
2.3      Choice of Accelerograms for Time History Analysis                                    

3 Direct Displacement-Based Design:Fundamental Considerations                 

3.1 Introduction                                                                                           
3.2 Basic Formulation of the Method                                                                  
  3.2.1 Example 3.1 Basic DDBD                                                               
3.3 Design Limit States and Performance Levels                                                 
  3.3.1 Section Limit States                                                                     
  3.3.2 Structure Limit States                                                                       
  3.3.3 Selection of Design Limit State                                          
3.4 Single-Degree-of-Freedom Structures                                                     
  3.4.1 Design Displacement for a SDOF structure                                  
  3.4.2 Yield Displacement                                                              
  3.4.3 Equivalent  Viscous Damping                                                       
  3.4.4 Design Base Shear Equation                                                            
  3.4.5 Design Example 3.3:  Design of a Simple Bridge Pier                   
  3.4.6 Design When the Displacement Capacity Exceeds the Spectral Demand                                                      
  3.4.7 Example 3.4: Base Shear for a Flexible Bridge Pier                        
3.5 Multi-Degree-of-Freedom Structures                                                   
  3.5.1 Design Displacement                                                      
  3.5.2 Displacement Shapes                                                       
  3.5.3 Effective Mass                                                                     
  3.5.4 Equivalent Viscous Damping             
  3.5.5 Example 3.5: Effective Damping for a Cantilever Wall Building
  3.5.6 Distribution of Design Base Shear Force                                    
  3.5.7 Analysis of Structure under Design Forces                     
  3.5.8 Design Example 3.6:  Design moments for a Cantilever Wall Building                                                            
  3.5.9 Design Example 3.7: Serviceability Design for a antilever Wall Building                                               
3.6 P-∆ Effects                                                                                              
  3.6.1 Current Design Approaches                                                        
  3.6.2 Theoretical Considerations                                                
  3.6.3 Design Recommendations for Direct Displacement-based Design                                             
3.7 Combination of Seismic and Gravity Actions                                   
  3.7.1 A Discussion of Current Force-Based Design Approaches          
  3.7.2 Combination of Gravity and Seismic Moments in Displacement-Based Design                                         
3.8 Consideration of Torsional Response in Direc Displacement-Based Design                                                       
  3.8.1 Introduction                                                                          
  3.8.2 Torsional Response of Inelastic Eccentric Structures                  
  3.8.3 Design to Include Torsional Effects     
3.9 Capacity Design for Direct Displacement-Based Design                    
3.10 Some Implications of DDBD                                                                
  3.10.1 Influence of Seismic Intensity on Design Base Shear Strength       
  3.10.2 Influence of Building Height on Required Frame Base Shear Strength                                                                  

3.10.3    Bridge with Piers of Different Height                           

4   Analysis Tools for Direct Displacement-Based Design                             

4.1 Introduction                                                                                          
4.2 Force-Displacement Response of Reinforced Concrete Members               
  4.2.1 Moment-Curvature Analysis                                                       
  4.2.2 Concrete Properties for Moment-Curvature Analysis                    
  4.2.3 Masonry Properties for Moment-Curvature Analyses                    
  4.2.4 Reinforcing Steel Properties for Moment-Curvature Analyses       
  4.2.5 Strain Limits for Moment-Curvature Analysis                                 
  4.2.6 Material Design Strengths for Direct Displacement-Based Design                                                 
  4.2.7 Bilinear Idealization of Concrete Moment-Curvature Curves        
  4.2.8 Force-Displacement Response from Moment-Curvature                
  4.2.9 Computer Program fr Moment-Curvature and Force-Displacement                                                                      
4.3 Force-Displacement Response of Steel Members                                       
4.4 Elastic Stiffness of Cracked Concrete Sections                                           
  4.4.1 Circular Concrete Columns                                                            
  4.4.2 Rectangular Concrete Columns                                                 
  4.4.3 Walls                                                                                         
  4.4.4 Flanged Reinforced Concrete Beams                                              
  4.4.5 Steel Beam and Column Sections                                               
  4.4.6 Storey Yield Drift of Frames                                                           
  4.4.7 Summary of Yield Deformations                                                    
4.5 Analyses Related to Capacity Design Requirements                                   
  4.5.2      Default Overstrength Factors                                                      
  4.5.3 Dynamic Amplification (Higher Mode Effects)                               
4.6 Equilibrium Consideration in Capacity Design                                          
4.7 Dependable Strength of Capacity Protected Actions                                  
  4.7.1 Flexural Strength                                                                     
  4.7.2 Beam/Column Joint Shear Strength                                              
  4.7.3 Shear Strength of Concrete Members: Modified UCSD model      
  4.7.4 Design Example 4.2:  Shear Strength of a Circular Bridge Column                                                                  
  4.7.5 Shear Strength of Reinforced Concrete and Masonry Walls           
  4.7.6 Response to Seismic Intensity Levels Exceeding the Design Level                                                            
4.8 Shear Flexibility of Concrete Members                                                  
  4.8.1 Computation of Shear Deformations                                          
  4.8.2 Design Example 4.3 Shear Deformation,and Failure Displacement of a Circular Column                              
4.9 Analysis Tools for Design Response Verification                                       
  4.9.1 Introduction                                                                            
  4.9.2 Inelastic Time-History Analysis for Response Verification             
  4.9.3 Non-Linear Static (Pushover) Analysis                                       

5 Frame Buildings 

                                                                                        
5.1 Introduction                                                                                           
5.2 Review of Basic DDBD Process for Frame Buildings                                  
  5.2.1 SDOF Representation of MDOF Frame                                       
  5.2.2 Design Actions for MDOF Structure from  SDOF Base Shear Force                                                              
  5.2.3 Design Inelastic Displacement Mechanism for Frames                   
  5.3.1 Influence on Design Ductility Demand                                         
  5.3.2 Elastically Responding Frames                                                   
  5.3.3 Yield Displacement of Irregular Frames                                         
  5.3.4 Design Example 5.1:Yield Displacement and  Damping of an Irregular Frame                                                      
  5.3.5 Yield Displacement and Damping when Beam Depth is Reduced with Height                                              
  5.3.6 Yield Displacement of Steel Frames                                               
5.4 Controlling Higher Mode Drift Amplification                                             
5.5 Structural Analysis Under Lateral Force Vector                                           
  5.5.1 Analysis Based on Relative Stiffness of Members                           
  5.5.2 Analysis Based on Equilibrium Considerations                              
5.6 Section Flexural Design Considerations                                                       
  5.6.1 Beam Flexural Design                                                                    
  5.6.2 Column Flexural Design                                                                
5.7 Direct Displacement-Based Design of Frames for Diagonal Excitation       
5.8 Capacity Design for Frames                                                                         
  5.8.1 General Requirements                                                                
  5.8.2 Beam Flexure                                                                             
  5.8.3 Beam Shear                                                                               
  5.8.4 Column Flexure                                                                         
  5.8.5 Column Shear                                                                            
5.9 Design Verification                                                                                 
  5.9.1 Displacement Response                                                             
  5.9.2 Column Moments                                                                     
  5.9.3 Column Shears                                                                          
  5.9.4 Column Axial Forces                                                                      
5.10 Design Example 5.2: Member Design Forces for an Irregular Two-Way Reinforced Concrete Frame                                          
5.11 Precast Prestressed Frames                                                                          
  5.11.1 Seismic Behaviour of Prestressed Frames with Bonded Tendons                                                                
  5.11.2 Prestressed Frames with Unbonded Tendons                                
  5.11.3 Hybrid Precast Beams                                                                     
  5.11.4 Design Example 5.3:  DDBD of a Hybrid Prestressed Frame Building including P-∆ Effects                                             
5.12    Masonry Infilled Frames                                                                              
  5.12.1 Structural Options                                                                       
  5.12.2 Structural Action of Infill                                                                
  5.12.3 DDBD of Infilled Frames                                                               
5.13 Steel Frames                                                                                              
  5.13.1 Structural Options                                                                        
  5.13.2 Concentric Braced Frames                                                              
  5.13.3 Eccentric Braced Frames                                                                
5.14 Design Example 5.4: Design Verification of Design Example 5.1/5.2       

6 Structural Wall Buildings                                                                                    

6.1 Introduction: Some Characteristics of Wall Buildings                                   
  6.1.1 Section Shapes                                                                           
  6.1.2 Wall Elevations                                                                         
  6.1.3 Foundations for  Structural Walls                                                    
  6.1.4 Inertia Force Transfer into Walls                                            
  6.2.1 Design Storey Displacements                                                          
6.3 Wall Yield Displacements:Significance to Design                                     
  6.3.2 Elastically Responding Walls                                                      
  6.3.3 Multiple In-Plane Walls                                                                   
6.4 Torsional Response of Cantilever Wall Buildings                                         
  6.4.1 Elastic Torsional Response                                                        
  6.4.2 Torsionally Unrestrained Systems                                                  
  6.4.3 Torsionally Restrained Systems                                                       
  6.4.4 Predicting Torsional Response                                                        
  6.4.5 Recommendations for DDBD                                                       
  6.4.6 Design Example 6.1: Torsionally Eccentric Building                      
  6.4.7 Simplification of the Torsional Design Process                              
6.5 Foundation Flexibility Effects on Cantilever Walls                                      
  6.5.1 Influence on Damping                                                               
  6.5.2 Foundation Rotational Stiffness                                                    
6.6 Capacity Design for Cantilever Walls                                                           
  6.6.1 Modified Modal Superposition (MMS) for Design Forces in Cantilever Walls                                                 
  6.6.2 Simplified Capacity Design for Cantilever Walls                            
6.7 Precast Prestressed Walls                                                                      
6.8 Coupled Structural Walls                                                                              
  6.8.1 General Characteristics                                                              
  6.8.2 Wall Yield Displacement                                                              
  6.8.3 Coupling Beam Yield Drift                                                             
  6.8.4 Wall Design Displacement                                                         
  6.8.5 Equivalent Viscous Damping                                                          
  6.8.6 Summary of Design Process                                                          
  6.8.7 Design Example 6.3:  Design of a Coupled–Wall Building              

7      Dual Wall-Frame Buildings                                                                                

7.1 Introduction                                                                                            
7.2 DDBD Procedure                                                                                   
  7.2.1 Preliminary Design Choices                                                       
  7.2.2 Moment Profiles for Frames and Walls                                           
  7.2.3 Moment Profiles when Frames and Walls are Connected by Link Beams                                                              
  7.2.4 Displacement Profiles                                                                
  7.2.5 Equivalent  Viscous Damping                                                          
  7.2.6 Design Base Shear Force                                                                
  7.2.7 Design Results Compared with Time History Analyses                   
7.3 Capacity Design for Wall-Frames                                                                 
  7.3.1 Reduced Stiffness Model for Higher Mode Effects                        
  7.3.2 Simplified Estimation of Higher Mode Effects for Design             
7.4 Design Example 7.1: Twelve Storey Wall-Frame Building                            
  7.4.1 Design Data                                                                              
  7.4.2 Transverse Direction Design                                                         
  7.4.3 Longitudinal Direction Design                                                   
  7.4.4 Comments on the Design                                                              

8 Masonry Buildings                                                                                        

8.1 Introduction: Characteristics of Masonry Buildings                                     
  8.1.1 General Considerations                                                              
  8.1.2 Material Types and Properties                                                         
8.2 Typical Damage and Failure Modes                                                             
  8.2.1 Walls                                                                                         
  8.2.2 Coupling of Masonry Walls by Slabs, Beams or  Masonry Spandrels                                                             
8.3 Design Process for Masonry Buildings                                                        
  8.3.1 Masonry Coupled Walls Response                                                  
  8.3.2 Design of Unreinforced Masonry Buildings                                    
  8.3.3 Design of Reinforced Masonry Buildings                                        
8.4 3-D Response of Masonry Buildings                                                            
  8.4.1 Torsional Response                                                                    
  8.4.2 Out–of–Plane Response of Walls                                                  

9 Timber Structures                                                                                          

9.1 Introduction: Timber Properties                                                            
9.2 Ductile Timber Structures for Seismic Response                                         
  9.2.1 Ductile Moment-Resisting Connections in Frame Construction
  9.2.2 Timber Framing with Plywood Shear Panels                                  
  9.2.3 Hybrid Prestressed Timber Frames                                                 
9.3 DDBD Process for Timber Structures                                                       
9.4 Capacity Design of Timber Structures                                                          

10 Bridges                                                                                                              

10.1 Introduction: Special Characteristics of Bridges                                           
   10.1.1 Pier Section Shapes                                                                        
   10.1.2 The Choice between Single-column and Multi-column Piers         
   10.1.3 Bearing-Supported vs. Monolithic Pier/Superstructure Connection                                                                                                                                 
   10.1.5 Influence of Abutment Design                                                      
   10.1.6 Influence of Movement Joints                                                        
   10.1.7 Multi-Span Long Bridges                                                            
   10.1.8 P-∆ Effects for Bridges                                                                   
   10.1.9 Design Verification by Inelastic Time-History Analyses                  
10.2 Review of Basic DDBD Equations for Bridges                                            
10.3 Design Process for Longitudinal Response                                                 
   10.3.1 Pier Yield Displacement                                                                
   10.3.2 Design Displacement for Footing-Supported Piers                        
   10.3.3 Design Example 10.1: Design Displacement for a Footing-Supported Column                                               
   10.3.4 Design Displacement for Pile/Columns                                         
   10.3.5 Design Example 10.2: Design Displacement for a Pile/Column    
   10.3.6 System Damping for Longitudinal Response                                 
10.4 Design Process for Transverse Response                                                     
   10.4.1 Displacement Profiles                                                                  
   10.4.2 Dual Seismic Load Paths                                                                 
   10.4.3 System Damping                                                                         
   10.4.4 Design Example 10.4: Damping for the Bridge of Fig. 10.17         
   10.4.5 Degree of Fixity at Column Top                                                     
   10.4.6 Design Procedure                                                                         
   10.4.7 Relative Importance of Transverse and Longitudinal Response      
   10.4.8 Design Example 10.5:Transverse Design of a Four-Span Bridge                                                                     
10.5 Capacity Design Issues                                                                               
   10.5.1 Capacity Design for Piers                                                                
   10.5.2 Capacity Design for Superstructures and Abutments                      
10.6    Design Example 10.6: Design Verification of Design Example 10.5           

11 Structures with Isolation and Added Damping   
                                              
   11.1.1 Objectives and Motivations                                                            
   11.1.2 Bearing Systems, Isolation and Dissipation Devices                       
   11.1.3 Design Philosophy/Performance Criteria                                       
   11.1.4 Problems with Force – Based Design of Isolated Structures           
   11.1.5 Capacity Design Concepts Applied to Isolated Structures               
   11.1.6 Alternative Forms of Artificial Isolation/Dissipation                       
11.2 Bearing Systems, Isolation and Dissipation Devices                                     
   11.2.1 Basic Types of Devices                                                                   
   11.2.2 “Non-Seismic” Sliding Bearings                                                      
   11.2.3 Isolating Bearing Devices                                                                
   11.2.4 Dissipative systems                                                                      
   11.2.5 Heat Problems                                                                           
   11.2.6 Structural Rocking as a Form of Base Isolation                              
11.3 Displacement-Based Design of Isolated Structures                                      
   11.3.1 Base–Isolated Rigid Structures                                                       
   11.3.2 Base-Isolated Flexible Structures                                                  
   11.3.3 Controlled Response of Complex Structures                                  
11.4 Design Verification of  Isolated Structures                                                    
   11.4.1 Design Example 11.7:Design Verification of Design Example 11.3                                                                      
   11.4.2 Design Example 11.8:Design Verification of Design Example 11.5                                                                      

12 Wharves and Piers                                                                                                

12.1 Introduction                                                                                             
12.2 Structural Details                                                                                   
12.3 The Design Process                                                                                    
   12.3.1 Factors Influencing Design                                                             
   12.3.2 Biaxial Excitation of Marginal Wharves                                         
   12.3.3 Sequence of Design Operations                                                      
12.4 Port of Los Angeles Performance Criteria                                                    
   12.4.1 POLA Earthquake Level and Performance Criteria                       
   12.4.2 Performance Criteria for Prestressed Concrete Piles                       
   12.4.3 Performance Criteria for Seismic Design of Steel Pipe Piles            
12.5 Lateral Force-Displacement Response of Prestressed Piles                          
   12.5.1 Prestressed Pile Details                                                                  
   12.5.2 Moment-Curvature Characteristics of Pile/Deck Connection        
   12.5.3 Moment-Curvature Characteristics of Prestressed Pile In-Ground Hinge                                                                                           
12.6 Design Verification                                                                                   
   12.6.1 Eccentricity                                                                                 
   12.6.2 Inelastic Time History Analysis                                                       
12.7 Capacity Design and Equilibrium Considerations                                         
   12.7.1 General Capacity Design Requirements                                         
   12.7.2 Shear Key Forces                                                                         
12.8 Design Example 12.1: Initial Design of a Two-Segment Marginal Wharf     
12.9 Aspects of Pier Response                                                                             

13 Displacement-Based Seismic Assessment                                                         

13.1 Introduction: Current Approaches                                                            
   13.1.1 Standard Force-Based Assessment                                                 
   13.1.2 Equivalent Elastic Strength Assessment                                          
   13.1.3 Incremental Non-linear Time History Analysis                               
13.2 Displacement-Based Assessment of SDOF Structures                                 
   13.2.1 Alternative Assessment Procedures                                                
   13.2.2 Incorporation of P-∆ Effects in Displacement-Based Assessment                                                                          e                                                           
13.3 Displacement-Based Assessment of MDOF Structures                                
   13.3.1 Frame Buildings                                                                        
   13.3.2 Assessment Example 2: Assessment of a Reinforced Concrete Frame                                                            
   13.3.3 Structural Wall Buildings                                                              
   13.3.4 Other Structures                                                                         

14 Draft Displacement-Based Code for Seismic Design of Buildings                 

References
Symbols List                                                                                                                 
Abbreviations
Index 715
Structural Analysis CD                                                                                  

NO TE PIERDAS LAS NOVEDADES

Suscríbete a nuestro boletín informativo para estar al día de todas las promociones y novedades.

Pago seguro | Mensajerías

Copyright © Despegando S.L. 2018 | | info@ingenieriayarte.com