CONTÁCTENOS - 91 575 78 24
Estás en
Si no encuentra un libro lo buscamos por Ud.
91 575 78 24


Tiene 0 productos en su cesta Importe total: 0
> > Waves and Vibrations in Soils: Earthquakes, Traffic, Shocks, Construction works

Por favor introduzca la cantidad deseada y pulse sobre el carrito.

195 €/Ud.

Waves and Vibrations in Soils: Earthquakes, Traffic, Shocks, Construction works



The main scientific and engineering goal of this book is to deal simultaneously with soil dynamics/vibrations and wave propagation in soils (including seismic waves). These various fields are generally considered separately and the important links between them, both from scientific and practical points of view, are unfortunately not investigated


  • ISBN: 978-8861980303
  • Páginas: 449
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2009

Compra bajo pedidoDisponibilidad: 3 a 7 Días

Contenido Waves and Vibrations in Soils: Earthquakes, Traffic, Shocks, Construction works

The main scientific and engineering goal of this book is to deal simultaneously with soil dynamics/vibrations and wave propagation in soils (including seismic waves). These various fields are generally considered separately and the important links between them, both from scientific and practical points of view, are unfortunately not investigated. They are usually considered in separate disciplines such as earthquake geotechnical engineering, civil engineering, mechanics, geophysics, seismology, numerical modelling, etc. The objective of the book is to offer in a single publication an overview of soil dynamics and wave propagation in soils with emphasis on engineering applications. It starts from a wide variety of practical problems (e.g. traffic induced vibrations, dynamic compaction, vibration isolation), then deals with 1D and 2D/3D wave propagation in heterogeneous and attenuating media (with application to laboratory and in situ dynamic characterization of soils), gives an overview of various numerical methods (e.g. FEM, BEM) to simulate wave propagation (including numerical errors, radiation/absorbing conditions, etc) and finally investigates seismic wave propagation and amplification in complex geological structures (e.g. irregular topographies, alluvial deposits).


List of symbols

1 Waves and vibrations in soils

1.1 Various fields and applications
1.2 Vibrations due to construction works
   1.2.1 Pile driving
   1.2.2 Dynamic compaction
1.3 Vibrations induced by wind turbines
1.4 Blast induced vibrations
   1.4.1 Vibrations induced inmines
   1.4.2 Vibrations induced in quarries
1.5 Traffic induced vibrations
   1.5.1 Vibrations due to road traffic
   1.5.2 Vibrations due to railways
   1.5.3 Theoretical analysis of moving loads
1.6 Vibration isolation
   1.6.1 Practical problem
   1.6.2 Experimental results
   1.6.3 Numericalmodels
   1.6.4 Values of themechanical parameters
1.7 Earthquake engineering and seismology
   1.7.1 Analysis at various scales
   1.7.2 Seismic wave propagation in soils
   1.7.3 Values of themechanical parameters
1.8 Synthesis of the various parameters

2 1D-wave propagation

2.1 Introduction
2.2 Dynamic equilibrium of a beam
   2.2.1 Kinematics and main assumptions
   2.2.2 Virtual rate of work by internal forces
   2.2.3 Virtual rate of work by external forces
   2.2.4 Virtual rate of work by quantities of acceleration
   2.2.5 Equilibrium equation
2.3 Longitudinal vibrations of beams
   2.3.1 Dynamic equilibrium
   2.3.2 Homogeneous equation
   2.3.3 Solution in terms of stresses
   2.3.4 Eigenmodes of the bar
   2.3.5 Example 1: pile driving
   2.3.6 Example 2: characterization of a heterogeneous bar
   2.3.7 Absorbing boundaries
2.4 Torsional vibrations of beams
   2.4.1 Dynamic equilibrium
   2.4.2 Homogeneous equation
   2.4.3 Stresses in the beam
   2.4.4 Eigenmodes of the beam
2.5 Shear vibrations of beams
   2.5.1 Bending-shear vibrations
   2.5.2 From bending-shear to pure shea
2.6 Behaviour of dissipativemedia
   2.6.1 Dissipative phenomena
   2.6.2 Viscoelastic behaviour
   2.6.3 Rheologicalmodels
2.7 Wave propagation in viscoelastic media
   2.7.1 Dynamic equilibrium
   2.7.2 Viscoelastic behaviour
   2.7.3 Wave equation in viscoelasticmedia
   2.7.4 Complex wavenumber
   2.7.5 Relationship between α and Q−1
   2.7.6 Dispersion laws
2.8 Examples of propagation in viscoelastic media
   2.8.1 Example 1 : propagation of a triangular signal
   2.8.2 Example 2 : propagation of a seismic wave.
2.9 Other linear and nonlinearmodels
   2.9.1 Constant Q (CQ) model
   2.9.2 Frequency dependent Qmodel
   2.9.3 Nearly Constant Q (NCQ)model
   2.9.4 Equivalent linear viscoelasticity
   2.9.5 Frequency dependentmodels
   2.9.6 Nonlinear viscoelasticmodels .
2.10 Application 1: dynamic characterization on resonant column
   2.10.1 Principles of the test
   2.10.2 Description of the specimen motion
   2.10.3 Actual resonant column tes
   2.10.4 Estimation of damping
   2.10.5 Results fromresonant column tests
2.11 Application 2: dynamic characterization under fast loadings
   2.11.1 Split Hopkinson Pressure Bar test
   2.11.2 Experimental device
   2.11.3 Stress wave in the specimen
   2.11.4 Determination of the mechanical parameters
   2.11.5 3D Split Hopkinson Pressure Bar test
   2.11.6 3D fast dynamic response of sand
2.12 Application 3: response of a heterogeneous soil profile .
   2.12.1 Soil behaviour .
   2.12.2 Wave equation for a heterogeneous profile
   2.12.3 Boundary conditions
   2.12.4 Eigenfrequencies and mode participation factors
2.13 Application 4: soil-structure interaction
   2.13.1 Basic principles
   2.13.2 Equations of motion for the soil
   2.13.3 Case of a surface excitation
   2.13.4 Influence of the wave velocity in the soil
2.14 Experimental estimation of damping
   2.14.1 Various experimental methods
   2.14.2 Methods for the estimation of attenuation
   2.14.3 Definitions of attenuation:
   2.14.5 Characterization of the various approaches
   2.14.6 Comparison of the governing parameters

3 2D/3D-wave propagation

3.1 Introduction
3.2 Dynamic equilibrium of a continuous medium
   3.2.1 Equilibrium equation - principle of virtual work
   3.2.2 Constitutive equation
   3.2.3 Equilibrium equations in terms of displacements
   3.2.4 Decomposition of the displacement field
   3.2.5 Uncoupled wave equations
   3.2.6 Body waves
   3.2.7 Wave propagation in anisotropic media
3.3 Wave propagation in unbounded media
   3.3.1 Wave equations for plane waves
   3.3.2 Planemonochromatic waves
   3.3.3 Reflection-refraction of plane waves at an interface
   3.3.4 Plane waves in layered media: vibration isolation
3.4 Spherical waves
   3.4.1 Wave equation
   3.4.2 Solution wavefield
   3.4.3 Geometrical damping .
3.5 Waves in a homogeneous or heterogeneous half-space
   3.5.1 Surface waves: SH case
   3.5.2 Surface waves: P/SV case
   3.5.3 Propagation of a plane SH-wave in a surface layer
   3.5.4 Amplification of seismic waves in layered media
3.6 Application 1: waves in centrifuged models
   3.6.1 Historical summary
   3.6.2 Equivalence principle
   3.6.3 Calculation of the scaling factors
   3.6.4 Dynamic experiments in the centrifuge
   3.6.5 Examples of dynamic centrifuge experiments
   3.6.6 Analysis of the threedimensional wavefield
   3.6.7 Modelling propagation in dissipative soils
   3.6.8 Simulations for drop-ball experiments
   3.6.9 Influence of frequency on attenuation factor
   3.6.10 Numerical modelling of centrifuge experiments
   3.6.11 Removing reflections by homomorphic filtering
   3.6.12 Analysis of dispersion
3.7 Application 2: Spectral Analysis of Surface Waves and in situ tests
   3.7.1 Dispersion of Love waves in a single-layered half-space
   3.7.2 Dispersion of surface waves in a heterogeneous half-space
   3.7.3 Steady State Rayleighmethod
   3.7.4 Spectral Analysis of Surface Waves: experiments
   3.7.5 Seismic refraction.
   3.7.6 In-hole tests
   3.7.7 Microtremormethods
   3.7.8 Conclusions on field tests

4 Modelling wave propagation

4.1 Numerical methods for wave propagation
   4.1.1 Modelling wave propagation
   4.1.2 Numerical Modelling in Elastodynamics
   4.1.3 Time domain vs frequency domain
   4.1.4 Actual or synthetic signals
4.2 The Finite ElementMethod
   4.2.1 Strong formulation
   4.2.2 Weak formulation
   4.2.3 Approximate minimization: Galerkin method
   4.2.4 Finite elements
   4.2.5 Time integration algorithms
   4.2.6 Spectral elements
4.3 Numerical dispersion
   4.3.1 Physical dispersion and attenuation
   4.3.2 Numerical errors for wave propagation
   4.3.3 Theoretical numerical dispersion
   4.3.4 Time-step estimates for some simple cases
   4.3.5 Numerical dispersion for low order elements
   4.3.6 Influence of the geometrical arrangement
   4.3.7 Influence of mass matrix formulation
   4.3.8 Efficiency of higher order elements
4.4 Physical and numerical damping
   4.4.1 Rayleigh and Caughey damping
   4.4.2 Rheological interpretation of Rayleigh damping
   4.4.3 Attenuation models for geomaterials
   4.4.4 Numerical damping
4.5 Modelling wave propagation in unbounded media
   4.5.1 Absorbing boundaries in 1D
   4.5.2 Absorbing boundaries in 2D
   4.5.3 Infinite elements
   4.5.4 Absorbing layers (PML)
   4.5.5 Coupled approaches
4.6 The Boundary Element Method
   4.6.1 Interest of the method in dynamics
   4.6.2 Maxwell-Betti theorem.
   4.6.3 Integral equations in elastodynamics
   4.6.4 Discretization and regularization principle
   4.6.5 Wave propagation in unbounded media
   4.6.6 Numerical Implementation
   4.6.7 Validation and influence of the regularization
   4.6.8 Advanced formulation: the Fast Multipole Method
   4.6.9 Elastodynamics in time domain
4.7 Applications to wave propagation in soil
   4.7.1 Diffraction of a plane wave in unbounded media
   4.7.2 Vibrations of a foundation
   4.7.3 Vibration isolation using piles or trenches
   4.7.4 Traffic induced vibrations in railway tunnels

5 Seismic wave propagation and amplification

5.1 Introduction
5.2 Seismic wave amplification
5.2.1 Main governing phenomena
   5.2.2 Experimental characterization
5.3 Seismic wave amplification in layeredmedia
   5.3.1 From transfer function to time-domain response
   5.3.2 Amplification in single-layeredmedia
   5.3.3 Amplification in multi-layered media
5.4 Amplification due to the topography
   5.4.1 Main phenomena and simplified analysis
   5.4.2 Amplification by crests and hills
   5.4.3 Amplification by canyons
   5.4.4 Amplification on actual topographies
5.5 Amplification of seismic waves in 2D alluvial basins
   5.5.1 Amplification by wedges
   5.5.2 Theoretical basins
   5.5.3 Cylindrical basins
   5.5.4 Cylindrical basin vs horizontally layered soil .
   5.5.5 Elliptical basins with variable shape ratio
   5.5.6 2D/1D aggravation factor
5.6 Amplification of seismic waves in 3D alluvial basins
   5.6.1 Semi-spherical basin
   5.6.2 Sine-shaped basin
   5.6.3 Semi-spherical basin and oblique incidences
   5.6.4 Semi-ellipsoidal basin
   5.6.5 Moon-valleymodel
5.7 Modal approaches to analyze site effects
   5.7.1 Amplification of the seismic motion and resonance
   5.7.2 Various types of modal approaches .
   5.7.3 Simplified modalmethod
   5.7.4 Features of the various modal methods
   5.7.5 Fundamental frequency of a geological structure
   5.7.6 Modal estimation of the fundamental frequency
   5.7.7 Simplified modal method vs experimental spectral ratios
5.8 Amplification in shallow basins (e.g. Nice)
   5.8.1 Analysis of site effects in Nice (France)
   5.8.2 Amplification from 1D transfer functions
   5.8.3 2Dmodel of the geological profile
   5.8.4 Amplification of a plane SH-wave
   5.8.5 Influence of attenuation
   5.8.6 1D and 2D amplification vs experimental results
   5.8.7 2D/1D aggravation factor
   5.8.8 Comparison with the simplified modal method
   5.8.10 Comparisons with a deep alluvial basin
5.9 Amplification in a deep basin (Volvi)
   5.9.1 The Volvi EuroSeisTest
   5.9.2 Simplified and complete models of the Volvi basin
   5.9.3 SH wave amplification in the Volvi basin
   5.9.4 Comparisons between simplified and complete models
   5.9.5 SV -wave amplification in the Volvi basin
   5.9.6 2D/1D aggravation factor
   5.9.7 Conclusions on site effects in Volvi
5.10 Wave-structure interaction
   5.10.1 From soil-structure to wave-structure interaction
   5.10.2 Seismic analysis for buildings
   5.10.3 Seismic interaction with underground structures
   5.10.4 Seismic interactions at the local and global scales


A Several operators in mechanics
A.1 Vectors and product of vectors
A.2 Tensors and product
A.3 Gradient and Laplacian
A.3.1 Definitions
A.3.2 Examples

B Synthetic wavelets

B.1 Ricker wavelet
B.2 Gabor wavelet
B.3 Mavroeidis & Papageorgiou wavelet
B.4 Generalized Rayleigh wavelet
B.5 Küpper wavelet
B.6 Ormsby wavelet
B.7 Morlet wavelet
B.8 Meyer wavelet
B.9 Double-M wavelet

C Spectral analysis and filtering

C.1 Fourier transform
    C.1.1 Definitions
    C.1.2 Main properties
    C.1.3 Usual transforms
    C.1.4 Fourier transforms of synthetic wavelets
    C.1.5 Wave propagation in viscoelastic media
    C.1.6 Fourier transforms of actual signals
C.2 Filtering
    C.2.1 Classical filters
    C.2.2 Filtered signals: examples
C.3 Hilbert transformand envelope curve
    C.3.1 Definition
    C.3.2 Envelope curves

D Propagating waves: duration, velocity, echoes

D.1 From acceleration to displacement
    D.1.1 Integration of accelerograms
    D.1.2 Baseline correction
    D.1.3 Spectralmethods
D.3 Signal duration
D.4 Estimation of wave velocity .
    D.4.1 Peak to peak estimation
    D.4.2 Cross-correlation function
D.5 Detection of reflected waves and echoes
    D.5.1 Autocorrelation function .
    D.5.2 Real cepstrum .
    D.5.3 Time phase .

E Echo removal by homomorphic filtering

E.1 Basic principles
E.2 Computation of the complex cepstrum
E.3 Removing echoes thanks to cepstral filtering

    E.3.1 Principle of the method
    E.3.2 Homomorphic filtering: summary
    E.3.3 Application to actualmeasurements .


Suscríbete a nuestro boletín informativo para estar al día de todas las promociones y novedades.

Pago seguro | Mensajerías

Copyright © Despegando S.L. 2018 | |