CONTÁCTENOS - 91 575 78 24
RSS
Estás en www.ingenieriayarte.com
Si no encuentra un libro lo buscamos por Ud.
91 575 78 24

CESTA DE LA COMPRA

Tiene 0 productos en su cesta Importe total: 0
> > Tension Structures: Form and behaviour

Por favor introduzca la cantidad deseada y pulse sobre el carrito.

88 €/Ud.
Cantidad:

Tension Structures: Form and behaviour

Autor:

Descripción

Tension structures discussed in this research monograph cover pre-stressed cable nets, girders, trusses, and fabric membranes.


Características

  • ISBN: 9780727761736
  • Páginas: 192
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2018

Compra bajo pedidoDisponibilidad: 3 a 7 Días

Contenido Tension Structures: Form and behaviour

Tension structures discussed in this research monograph cover pre-stressed cable nets, girders, trusses, and fabric membranes. Attention is also drawn to cables in suspension bridges – a special form of a cable truss.

In their tensioned state, cables and fabrics adopt unique geometric con?gurations, which cannot be described by simple mathematical functions. Instead, they have to be found through iterative computations supported by physical experiments – a process known as ‘form-?nding’. Form- ?nding is a theme running through almost all chapters of the book, highlighting conceptual design issues and advocating the use of principles observed in nature when seeking to achieve optimal structural forms, or ‘minimal’ structures.
The form-?nding methodology is extended to suspension bridge cables, to emphasise the fact that they are not structures of ‘known shape’.

The second edition covers the most commonly used computational methods used in modelling tension structures, but also contains a signi?cant amount of new material,
which includes:

wide coverage of tension structures projects, focusing on iconic designs around the world

a more detailed description of architectural fabrics,with reference to the CEN/TC 250 European Code of Practice

stronger justi?cation for using the concept of the soap-?lm analogy in form-?nding of fabric membranes, based on the results of the latest research and recommendations of the European Design Guide for Tensile Surface Structures

Derivation of a new ‘shape’ equation for the case of an elastic (extensible) suspension bridge cable under the deck weight and cable weight – it is shown how this equation reduces to an equation describing a catenary form (in the case of cable weight only) and a parabolic form (in the case of deck weight only)

a brand new section on the relevance of the shape equation for inextensible cables to the form-?nding of rigid structural forms, such as arches. The focus here is on the inverted shape of a constant stress cable and how it relates to the design of the iconic Gateway Arch in St Louis, MO, USA

a comprehensive and insightful coverage of patterning methods for fabric structures (i.e. 3D to 2D transformations required to manufacture the fabric membrane), presenting the latest non-standard computational approaches.

The aim of the book is to enhance understanding of tension structures from both practical and theoretical points of view and to provide insights into problems associated with the computational modelling of their structural form and behaviour.

Table Contents

Preface     
Acknowledgements    
About the author                                                             

01  Introduction    

                                                        
1.1.De?nitions and classi?cations    
1.2.Strength  and stiffness of architectural  fabrics    
1.3.Types of architectural  fabrics    
1.4.Boundary tensioned  membranes    
1.5.Pneumatic  structures    
1.6.Pre-stressed cable nets and beams    
1.7.Design process of tension  membranes
1.8.Main features  of tension  membranes
1.9.Conventional  roo?ng  forms versus tension membranes
1.10.Closing remarks    20
References                                                                   

02 Form-?nding   
                                                     
2.1.General concepts.  Nature’s ‘secrets’                  
2.2.Concept  of a ‘minimal surface’: historical background    
2.3.Form-?nding methodologies                          
References                                       

03 Geometrically nonlinear behaviour: solutions using commonly used numerical methods        

 
3.1.Geometric  nonlinearity                                       
3.2.Commonly used computational methods  for the analysis of geometrically nonlinear behaviour
3.3.Transient stiffness method                                  
3.4.Force density method  (original formulation)     
3.5.Dynamic relaxation method                              
3.6.Computational static analysis versus form-?nding                                     

References                                                                       

04 Dynamic relaxation method  
                                
4.1.Dynamic relaxation method  with viscous damping    
4.2.Dynamic relaxation method  with kinetic damping                              

4.3.Application of dynamic relaxation to cable networks     
4.4.Evaluation of the dynamic relaxation method      
References                                                                         

05 Cable  roof  structures. Case  studies                      

5.1.Introduction                                                          
5.2.Case studies                                                
References   

06 Tension cables in suspension bridges.A case  of form-?nding       

                                 
6.1.‘Shape’ equation  for an inextensible suspension  cable    
6.2.‘Shape’ equation  for an extensible    suspension  cable    
6.3.Numerical modelling of shape  of suspension  bridge cables    
6.4.Form-?nding of suspension  bridge cables:practical aspects    
6.5.Form-?nding, or form-dictating?    
6.6.Relevance of ‘shape’ equations to form-?nding  of arch structures    
References    

07 Modelling of tension membranes    

7.1.Introduction    
7.2.Surface discretisation    
7.3.Surface discretisation for use with thetransient  stiffness method:limitations of    the approach
7.4.Surface discretisations used with the dynamic relaxation method    
7.5.Line elements  in modelling of stable minimal surface membranes    
7.6.Application of triangular elements to modelling of stable minimal surface membranes    
7.7.Mesh control – implications for design    
7.8.Patterning  of membranes    
7.9.Numerical accuracy and criteria used for convergence    
7.10.Data processing    
References    

Appendix I   Architectural fabrics    
Appendix II  Cables  for  tension structures    
Appendix III Minimal surfaces    
Appendix IV  Viscous  damping in dynamic relaxation    
Appendix V   Finite-difference analysis of inextensible    cable Load case 1:deck weight only    
Index

 

Pago seguro | Mensajerías

Copyright © Despegando S.L. 2024 | | info@ingenieriayarte.com